SALES ALERT: Unlock 10-40% Off on All Cell Products!

Human Motor Neurons (iPSC-derived, Normal)

SKU: 40HU-005

Human Motor Neurons (iPSC-derived, Normal)

SKU: 40HU-005
Pricing Starting at

Starting at: $852.00

Available Options

SKUPackage SizePriceQuantityAdd to Cart
40HU-005-4MCryopreserved, 4.0 million cells/vialStarting at: $2,203.00
40HU-005-2MCryopreserved, 2.0 million cells/vialStarting at: $1,633.00
40HU-005-1MCryopreserved, 1.0 million cells/vialStarting at: $852.00

Associated Products


Product Description

Spinal motor neurons (MNs) are a highly specialized type of neurons that reside in the ventral horns and project axons to muscles to control their movement. Neurodegenerative diseases, such as spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), Charcot-Marie-Tooth and poliomyelitis disease are a result of the progressive degeneration of motor neurons[1]. Furthermore, motor neurons derived from normal, or patient induced pluripotent stem cells (iPSCs) enable the generation of cell models with features relevant to human physiology, thus making it a valuable tool for biochemical analysis, disease modelling and other broad range of clinical applications [2,3].

iXCells Biotechnologies is proud to provide the world’s first fully differentiated and functional human iPSC-derived motor neurons that display typical neuronal morphology and express all key markers of motor neurons, e.g., HB9 (MNX1), ISL1, ChAT (Figure 1) when cultured in the Motor Neuron Culture Medium Kit (Cat# MD-0022-100ML). Moreover, whole cell patch clamp revealed that when cultured in Motor Neuron Activity Medium Kit (Cat# MD-0118-100ML) over 65% of the neurons exhibited mature spiking, and over 35% of the neurons had spontaneous activity at a holding potential of -60 mV (Figure 2) indicating the presence of a highly mature population of neurons.

iXCells also provide customized differentiation service with your own iPS cell lines.  Please contact us at for more details.

motor neurons 1

 Figure 1 (A) Immunofluorescence staining showing HB9 and ChAT positive cells on day 2 and 7 in culture respectively. (B) Flow cytometry measurements demonstrate >85% HB9 and >90% ISL1 positive cells on day 1-2.

 Figure 2 (A) An image of the cells during the experiment. The patch pipette is visible on the left. (B) The Sodium/potassium currents were recorded in voltage clamp mode with test potentials of -100 mV to 90 mV. (C) Excitatory postsynaptic currents (EPSCs) were recorded in voltage clamp mode while clamping the cell at -60 mV. (D) Evoked action potentials were recorded in current clamp mode starting with a current injection 12 pA below what is needed to hold the neuron at – 60 mV and with 3pA current steps. (E) Spontaneous activity was recorded in current clamp mode with a current injection needed for a membrane potential of -45 mV.

Product Details

Tissue Human iPSC-derived motor neurons (Normal)
Package Size 1.0 million cells/vial; 2.0 million cells/vial; 4.0 million cells/vial (frozen)
Shipped Cryopreserved
Storage Liquid Nitrogen
Media iXCells™ Motor Neuron Culture Medium Kit (Cat# MD-0022-100ML)
iXCells™ Motor Neuron Activity Medium Kit(Cat# MD-0118-100ML)



[1] Brady ST. (1993). “Motor neurons and neurofilaments in sickness and in health. Cell. 9;73(1):1-3.

[2] Dolmetsch R, Geschwind DH. (2011) “The human brain in a dish: the promise of iPSC-derived neurons”. Cell. 145(6):831-4.

[3] Payne NL, Sylvain A, O’Brien C, Herszfeld D, Sun G, Bernard CC. (2015) “Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases.” New Biotechnology. 25;32(1):212-28.

 Download Datasheet



  • Wong, J. K., Roselle, A. K., Shue, T. M., Shimshak, S. J., Beaty, J. M., Celestin, N. M., Gao, I., Griffin, R. P., Cudkowicz, M. E., & Sadiq, S. A. (2022). Apolipoprotein B-100-mediated motor neuron degeneration in sporadic amyotrophic lateral sclerosis. Brain Communications, 4(4). -- Learn More
  • Liu B, Li M, Zhang L, Chen Z, Lu P. (2022). Motor neuron replacement therapy for amyotrophic lateral sclerosis. Neural Regen Res;17:1633-9 -- Learn More
  • Liu, Y., Dodart, J., Tran, H., Berkovitch, S., Braun, M., Byrne, M., . . . Brown, R. H. (2021). Variant-selective stereopure oligonucleotides protect against pathologies associated with c9orf72-repeat expansion in preclinical models. Nature Communications, 12(1). doi:10.1038/s41467-021-21112-8 -- Learn More
  • Shen, X., Beasley, S., Putman, J. N., Li, Y., Prakash, T. P., Rigo, F., . . . Corey, D. R. (2019). Efficient electroporation of neuronal cells using synthetic oligonucleotides: Identifying duplex RNA and antisense oligonucleotide activators of Human frataxin expression. RNA, 25(9), 1118-1129. doi:10.1261/rna.071290.119 -- Learn More

  • Gasset-Rosa, F., Lu, S., Yu, H., Chen, C., Melamed, Z., Guo, L., . . . Cleveland, D. W. (2019). Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron, 102(2). doi:10.1016/j.neuron.2019.02.038 -- Learn More
  • Martier, R., Liefhebber, J. M., García-Osta, A., Miniarikova, J., Cuadrado-Tejedor, M., Espelosin, M., . . . Konstantinova, P. (2019). Targeting rna-mediated toxicity in c9orf72 als and/or ftd by rnai-based gene therapy. Molecular Therapy - Nucleic Acids, 16, 26-37. doi:10.1016/j.omtn.2019.02.001 -- Learn More

  • Melamed, Z., López-Erauskin, J., Baughn, M. W., Zhang, O., Drenner, K., Lin, N., Wu, D., . . . Cleveland, D. W. (2019). Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of tdp-43-dependent neurodegeneration. Nature Neuroscience, 22(2), 180-190. doi:10.1038/s41593-018-0293-z -- Learn More
  • Marei, H. E., Althani, A., Lashen, S., Cenciarelli, C., & Hasan, A. (2017). Genetically unmatched human Ipsc and Esc Exhibit Equivalent gene expression and neuronal differentiation potential. Scientific Reports, 7(1). doi:10.1038/s41598-017-17882-1 -- Learn More
  • Danziger, S. A., Miller, L. R., Singh, K., Whitney, G. A., Peskind, E. R., Li, G., . . . Smith, J. J. (2017). An indicator cell assay for blood-based diagnostics. PLOS ONE, 12(6). doi:10.1371/journal.pone.0178608 -- Learn More